6/15/2014

How Acoustic Sound Panels For Churches Improve Clarity

By Ina Hunt


The same structural characteristics that produce a lovely echo when music is performed can make ordinary speech nearly unintelligible. Music is an important part of most church services, but the congregation should also be able to clearly hear and understand spoken words without straining. Acoustic sound panels for churches clarify and focus tonal vibrations, making them easier for human ears to process.

Although some European Gothic cathedrals are famous for their signature echoes, there is a distinct line separating reverberation from garbled, irritating noise. Echoes occur because individual waves repeatedly bounce back and forth between ceilings and walls. While some building plans include acoustic accuracy, many houses of worship today exist in structures originally intended for other uses.

Although they did not have the advantage of modern computer modeling, historical attempts to correct the problem including adding absorbing ash to clay pots located in the walls and corners. This solution is primarily based on trial and error, with material added and subtracted until the desired clarity is achieved. Other methods included altering support pillars to redirect echo, or using specially cut stone blocks.

In modern buildings, solutions vary from adding thick carpeting in specific spaces, or using software to create individual and changeable reverberation shapes based on other acoustically famous interiors. Both methods work up to a point, but cannot completely overcome structural obstacles that are part of the original building plans. Many structures benefit most from flat baffles in front of walls or on ceilings.

These structures are not used to block or eliminate words or music, but rather to absorb unwanted excess, usually within a single room. Most incorporate the same basic design method, featuring an inner filling made of absorbent material, a frame, and a covering. The filling may consist of various synthetic foams or fiberglass, or may utilize newer, more environmentally friendly substances.

Dimensions are dictated by the amount of distortion or echo. Some may be as large as an entire wall or ceiling, while others only cover a four square foot area. Regardless of size, each allows waves to pass through rather than bouncing off a hard surface, and any returning echo is re-absorbed. This method uses the same principles as music studios to reproduce vocal and instrumental tones accurately.

Rather than being an industrial-looking eyesore, these structures lend themselves to the type of decor perfect for houses of worship. They may mirror stained glass windows, or can be used to repeat various themes already existing on actual walls or ceilings. Unadorned, they may seem intrusive, but in most cases a properly installed group looks like part of the original surroundings.

It is possible to precisely arrange them in the best possible positions using digital analysis, but diffusion and absorption is often best measured by the most effective tool of all, human hearing. Once the best configuration has been discovered, units can be positioned permanently. Instead of preventing certain frequency ranges or cutting down the volume, they make both speech and music sound clean and clear.




About the Author:



No comments:

Post a Comment